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s.lant.H 
The theory of galactic heavy-ion fragmentation has 

ken furthered by incorporating a T-matrix approach in- 
to the description of the threostep proccss of abrasion, 
ablation, and final-state interactions. The connection 
between this T-matrix and the interaction potential is 
derived. The resulting transition rate is shown to be in- 
dependent of the choice of the initial time. For resonant 
states, the substitution of complex energies for real 
energies is formally justified for up to third-order 
processes. 

The previously developed abrasion-ablation fragmen- 
tation theory is rederived from first principles and is 
shown to result from time-ordering. classical-probability. 
and zero-wid1 h resonance approximations. Im- 
provements in the accuracy of the total fragmentation 
cross sections would require an alternative to the latter 
two approximations. Since a more rigorous test of the 
theory would be to compare theoretical and experimental 
differential cross sections. a Lorenu-invariant differen- 
tial abrasion-ablation cross section is derived which ex- 
plicitly includes the previously derived abrasion total 
cross sections. This result requires the use of the time- 
ordering and classical probability assumptions. It is 
demonstrated that spectral and angular distributions 
could be easily obtained from the general Lorentz- 
invariant form. Future success in calculating these 
distributions will require the evaluation of the ablation 
T-matrix. which is the remaining formidable task. 

Introduction 
Research efforts are currently under way to develop 

methods for protecting astronauts from the potentially 
harmful efft!!ts of cosmic rays. These effects are par- 
ticularly important for astronauts on long-duration mis- 
sions and for career space workers making repeated 
journeys into space in the era of the Space Station and 
the Space Transportation System, because a biologically 
significant component of cosmic rays consists of 
relativistic nuclei (ref. 1). Theories are presently being 
developed to accurately describe their interactions with 
matter (refs. 2 through 6). !n previous work, an optical 
model potential approximation to the exact nucleus- 
nucleus multiple scattering series has been used, within 
the context of dkonal scattering theory (refs. 3 and 4). to 
accurately predict total abrasion cross sections. This 
method has been extenJed (ref. 6) to calculate isotopic 
and elemental total fragmentation cross sections by 
essentially multiplying the total abrasion cross section by 
the following two factors: ( I )  a charge dispersion fraction 
giving the probability that z of the abraded nucleons are 
protons, and (2) a compound nuclsus decay probability 
which describes the de-excitation (ablation) of an excited 
projectile nucleus prefragment. Final-state interactions 

(ref. 7). which describe the interactions between the 
abradui nucleons and the remaining projectile prcfrag- 
ment, are not yet included in the theory. 

Because of greater flexibility in comparing theory 
with experiment, it is advantageous to develop methods 
for calculating Lorentz-invariant differential cross sec- 
tions. Aside from direct comparkons with experimental 
data, angular and spectral distributionsaredly obtained 
for any reference frame (e.g., nucleus-nucleus center of 
mass, nucleon-nucleon center of mass. laboratory, etc.). 
Angular distributions obtained from eikonal theory are 
usually evaluated in the laboratory frame, and transfor- 
mations to another reference frame are laborious (ref. 8). 
In addition, eikonal theory is not readily generalized to 
calculate the Lorentz-invariant differential cross sections 
which are often used to present experimental data. 
Rather than simply multiplying the abrasion cross section 
by approximate factors to obtzin ablation effects, it is 
desired to include ablation in a more fundamental and 
exact manner by explicitly calculating ablation matrix 
elemen ts. 

With the preceding considerations in mind, a first- 
prinziples derivation of the transition rate is presented 
herein. The transition rate formally includes abrasion, 
ablation, and final-state interaction matrix elements and 
is easily generalized to produce Lorentz-invariant dif- 
ferential cross sections, The interaction potentials Y and 
transition operators T introduced herein are used to 
describe the three-step process of abrasion, ablation, and 
final-state interaction. This generalization is the main 
conceptual difference between their use in references 2 
and 3, where they were directly connected to an optical 
model description of abrasion only, and their use in the 
present work. 

Evaluation of Amplitudes 
The fundamental equations for the probability 

amplitudes are derived in this smion. The full Hamilton- 
ian H consists of an unperturbed piece H, and an addi- 
tional interaction V, such that 

H =  H,+ V (1) 

The eigenstates and eigentnergies of H, are obtained 
from 

The full wave function 9 is determined from the time- 
dependent Schriidinger equation 

(3) 

This wave function is expanded in terms of the complete, 



orthonormal set of unperturbed states 1 R> generated by 
Ho as 

+ = Cc,,(r)exp(-ir , , t / f i ) !n> (4) 
R 

Substituting equation (4) into equation (3) yields (refs. 9 
and 10) 

which, for a time-independent interaction, has the 
solution 

where 

and 

Equation (5) is exact, is of fundamental importance, and 
does not rquire V,, to be small, as might be assumed. 

The weak incompletely coupled approximation 
(WICA) is defined as 

where 

in equation (5) to give 

This quation is valid only for tima which are short com- 
pared with the lifetime of the initial state (Le., 
c,(r) e< chr)). If the perturbation Y is transient and 
small in magnitude, the amplitudes c&) will remain small 
for all times. Thus, equation (13) is most commonly used 
for scattering problems with small penurbing interaction 
potentials. In contrast, the WICA (q. (9;) is approprate 
when studying a decaying state over a period of time 
q u a l  to several half-lives. Therefore, the W I C A  is a p  
propriate for evaluating resonance states, since their 
complex energy widths result in the usual exponential 
decay. The solutions of equations (9) and (13) are iden- 
tical except for the appearance of complex energies in 
equation (9) where real energies are found in qua- 
tion (13). Thus, one of the major results of the present 
work is the demonstration that real energies can be simply 
replaced by compkx energies when studying resonances. 

RnCEncrgy Tnasition Amplitude 

In this section, equation ( 5 )  is integrated directly to 
yield an “exact” amplitude. A convergence factor, 
a - O +  , will be inserted to render the integral convergent 
for a nonfinite initial time (to - -a), where ar is much 
smaller than unity. Thus, equation (6) becomes 

and 
and analogously, 

with the initial, fully populated state at time ro denoted 
by li>. This approximation (eq. (9)) uncouples ck(f) 
from all other amplitudes except ci(t) and suggests that 
the regeneration or depletion of a particular snte 
depends only upon its being fed from or decaying to one 
other state. As is discussed subsequently, this approxima- 
tion is equivalent to neglecting higher-order terms in the 
interaction matrix elements. 

The strong incompletely coupled approximation 
(SICA) sets 

In equations (14) and (15), the correct method is to take 
the limit as a-O+ after taking the limit as fo--oo.Also, 
the convergence factor a is not required (Set = 0 before 
performing the integrals) for a finite initial time (e.g., 
I, = 0). 
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Inserting equation (15) into equation (14) and 
expanding yields and iterative result as follows: 

+ at")dt" exp (idk,f' + ar ')dt '  1 
+ at"')c',"' cxp (iw,,+" t at") dt" 1 

Equation (17) is tile exact final-state amplitude derived 
from quation (14). 

RcrCEnergy Perturbation TBcory urd the SICA 

In this section, a much more compact form for the 
amplitude is derived through the introduction of a 
T-matrix. An ansatz suggested (ref. IO) by the SICA 
(eq. (13)) is written as 

where the convergence factor is again inserted to render 
the integral convergent for nonfinite initial time 
(to - -a), and Tk, is a transition matrix element whose 
relationship to 'k; will be determined. Evaluating the in- 
tegral in equation (18) and taking the limit as to - --OD 

befare taking the limit as a - O +  yields 

For a finite value of to, the convergence factor is not re- 
quired and quation (1 8) becomes 

Evaluating these integrals gives 

1 e x p  (iW,+ + ar) - e x p  ( b k l t o  + atJ 
c,&t) = i,, +% v,, 

-utl + h 

exp(iw,,,r, + 2utd [ e x p  (dwtnr t ar) - exp(iwknro+ atd] + 
(-W,,, + i u ) ( - W n ,  + i u ) ( - w n /  + ia) 

Substituting equation (18). and the analogous expression 
for c,,(t,f, - -a), into equation ( 5 )  yields the relation- 
ship between T and V as 

This same result (eq. (21)) can be obtained from the exact 
solution (eq. (17)) by taking the limit as t,--or, in equa- 
tion (17). substituting equation (19) into the left-hand 
side of equation (1  7). and solving for Tk,: 

Identifying the denominator in equation (21) as the 
Green function G,, and using a modified Einstein sum- 
mation convention for triply repeated indices enables 
equation (21) to be written as 

or, in operator form, as 

This is the usual result from scattering theory (ref. IO). 
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Becaw of its extreme compactness and simplicity, 
equation (19) would be useful for the fundamental 
amplitudes in applications to the heavy-ion fragmenta- 
tion problem. There are, however, some questions con- 
cerning its general applicability: (I)  how do the solutions 
depend upon the choice of the initial time 1,; and (2) how 
does one include a description of resonances, which re- 
quire complex energies, rather than the real energies used 
previously. These questions are addressed in the follow- 
ing sections. 

Transition Rates and the Initial Time 
The choice of a nonfinite ir itial time (f, - -00) is ap- 

propriate in a scattering situation to ensure that possibly 
spurious transient terms are not introduced when the 
scattering region suddenly experiences the full potential 
at time f,. It is, however, worthwhile to determine what 
effect the choice of I, has on the experimentally 
measurable transition rate (or cross section). 

Clearly, the amplitudes given by equations (19) and 
(20) differ for different values off,. The transition rate is 
defined as 

where, for discrete final states, the probability is 

and for continuous final states, 

= SP(Q PJr) && 

PJr) = I q N 2  

with the probability related to the amplitude as 

From equation (19), 

which, upon taking the limit as a-O+, becomes 

Since the right-hand side of equation (29) does not 
change for the limit as t -Q,, the transition rate becomes 

Equation (30) is a fundamental result. In a similar man- 
ner, equation (20) yields 

Equation (31) yields 

which is identical to equation (29). Hence, the transition 
rate is independent of the choice of the initial time. 

Rcsoarlms and Compkx Emqies 

In previous work (refs. 6 and 11). an abrasion- 
ablation model was developed to describe heavy-ion 
fragmentation. A possible source of disagreement be- 
tween theoretical predictions and the available ex- 
perimental data might be uncertainties in the excitation 
energies of the excited projectile prefragments (refs. 6 
and 12). In reference 6 it was assumed that the prefrag- 
ment could be treated as an excited compound nucleus. 
An alternative app-oach would be to use a nuclear 
cascade description (ref. 13). Since a correct description 
of the excited yefragment is essential in predicting 
fragmentation cross sectior .. a description incor- 
porating an intranuclear m a d e  followed by a com- 
pound nucleus evaporation process may be required. 

The treatment of resonances, such as for the com- 
pound nucleus (ref. 14), requires the use of complex 
energies (ref. 9). In first-order theory, Mnbacher 
(ref. 10) has shown how to use complex energies to 
describe resonances, and Norbury and Deutchman 
(ref. 9) have shown- the same thing in second-order 
theory. Both of these presentations, however, depend 
upon the use of the WICA (eq. (9)). As previously men- 
tioned, the consideration of final-state interactions, 
together with abrasion-ablation, requires, in principle, 
third-order matrix elements. To accomplish this it is 
shown subsequently how to include complex energies 
beyond second order without the use of an incompletely 
coupled approximation. 

The basic second-order process involves a transition 
from an initial state I i> to an intermediate resonating 
state In>, followed by subsequent decay to the final 
state I k> . This transition involves the use of three cou- 
pled equations of the type given in equation (3, whereas 
Merzbacher (ref. 10) uses only two coupled equations to 
extract the first-order process. The rate of change of the 



intermediatestate coefficients is given by 

(33) 
dc (1) I 
2 = -C cl(t)exp(iw,,,O V,, 

dt fi , which, upon substitution of equation (37) becoma 

where the rates of change of the cl(t) are given by 

In reference 9, Norbury and Deutchman solved these 
equations by assuming the WlCA form for equation (34) 
as 

(35) 

In the present work, the full equation (34) is considered. 
A key factor, however, in the solubility of the three 
coupled quations (eqs. (9, (33). and (34)) is the separa- 
tion of quation (34) as 

Because of the substitution of the Kronecker delta term 
from equation (37) into the summation term in equa- 
tion (39). n# i in V,,,. Because I# n in equation (39) the 6, 
in equation (37) implies that n + i  in Vnf. 

- -  1 The solution of equation (40) c,,(,(I) appears com- 
plicared but can he simplified by reducing equation (40) 

dcdt) - - c ~ t )  exp (iwlnt) V,  

to an al_pchraic e\piesion through the use of a Fourier 
dt ill 

oo 
so that the first term is simply the right-hand side of 
equation (35). which is the W l C A  contribution. 

~ ; J O  E I, ./il(d) eup ( - l e i )  du (41) 

Integrating equation (36) yields and 

CAI) = 6, + !qf a lo ~ ~ ( 1 ’ )  exp ( iwlnt ’ )  dr’ 
Ascuming 

where 

Equation (33) is rewritten a; 
Multiplying equation (40) by exp [i(u +ia)t] and in- 
tegrating from I,, to OD yields 



+'c c 
( i f i )2  /+n m+n 

w + ia)/] 

x [ t : c m ( r ' )  exp ( i q m / ' )  dr' dr 1 (45) 

where the a factors have been inserted to render the in- 
tegrals convergent. Upon evaluation of these integrals, 
equation (45) becomes 

- 2 l i i  (0' + irvl .fn(w) 

vnj 
li 

exp [i(wni + a + ia)rd 

a,, + w + ia 
= -  

6 

x $owexp[i(wn,,, + w  +ia)/ ']  c,,,(t') dt' (46) 

Solving for f , (w)  and taking the inverse Fourier 
trznsform yields 

with 

Evaluation of the integrals in equation (47) is simplified 
by assuming (ref. 10) that 

and inserting Dirac's identity (ref. 15) 

At, i r 
~ ( 0 )  = - - - - 

a-O+ n a 2  
lim 



w h m  the energy shift Atn and the width rare  defined as For I< to, a contour taken in the upper half piane of 
figure 1 gives 

and 

fo(t c 'J = 0 

since no poles are enclosed. For Io(r > fa), the lower 
contour, which encloses the poles, is used to yield 

2 
(52) - 2rill 

r -* C '1 Vn/l q t n  - e/) 
IOU > fo) = 

i I '  
2 

2 I+n 
ACn - - + t, - t, 

The left-hand side of equation (47) is just 2x1 cn(f). Using 
equations (51) and (52). equation (47) is rewritten as 

exp Mun, + ia) ( r  - rJl 

The complex energy ?,, for the intermediate state I n> is 
(53) now defined as + 1 c vn/ "lm 40 

I+n m+n 

where 

exp [ iO(ro - r ) ]  dw 

--(w + Wn, + fa) 
Io(r) E 

(54) 
and 

(55)  

Equation (54) has two simple poles at 

and 

At,, i r icu 
u t =  - - - - -  A h 2  (57) 

Equation (47) then becomes 

Equation (61) is the probability amplitude for the in- 
termediate resonating state. Note that I ( r )  comes entirely 
from the second term on the right-hand side of equa- 
tion (36). Thus, the first term on the right-hand side of 
equation (61) is the W I C A  contribution, and the second 
term is the contribution from higher order processes. 

As a check of the preceding results (eq. (61)). set I(r) 
= 0 and consider the matching of initial conditions in the 
WICA. With [(I) = 0, equation (53) becomes 
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which, for f < lo. yields 

cn(t 4 tJ = 0 (63) 

since f o ( f < f o )  = 0 from equation (58). From equa- 
tion (6l), for t = to, 

This expression satisfies equation (33) when equation (37) 
is substituted (after letting f -fJ Thus. the initial condi- 
tions are satisfied in the WICA. 

The final-state amplitude is evaluated here by 
rewriting equation (5 )  as follows: 

since 

using standard contour integration techniques. Thus, 
equations (63) and (64) satisfy the initial condition 
specified in equation (43). For f > fo and f ( t )  = 0, equa- 
tion (61) becomes 

The derivative of equation (66) is 

which, yields in the limit as I- I,, 

where cn(f) is given by equation (61). Our interest lies in 
processes which proceed via the formation and decay of 
intermediate states. Thus, we will ignore the term'involv- 
ing Vkl,since it will be negligible or zero. Therefore, 
substituting equation (61) into equation (69) and in- 
tegrating from fo to t yields 

exp [iwki(t - tJ - 1 '1 e k - e i  

I 
x /. exp (iwknt") I ( r" )  dt" (70) 

to 

Equation (70) shows that the WlCA is equivalent to 
neglecting at least third-order terms compared with 
second-order terms in the final-state amplitude. 

As was done previously for the intermediate-state 
amplitude, the final-state amplitude within the WICA is 
evaluated for the initial conditions, which are 

and 
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In equation (71). it is assumed that, before turning on the 
interaction at to, the system is in its initial state. Equa- 
tion (72) is obtained from equation (5). with the initial 
condition on the intermediate state specified by equa- 
tion (43) inserted. For t = to, equation (70) satisfies equa- 
tion (71) trivially. Differentiating equation (70) and set- 
ting t = to then satisfies equation (72). 

Finally, the integral I(t)  is evaluated. Solution of 
equation (55)  requires knowledge of cm(?’). Using only 
the lowest-order contribution 

yields 

(74) 

Evaluating equation (74) using the same contour integra- 
tion techniques used previously to solve l#) enable +he 
final-state amplitude from equation (70) to be written as 

+ . . .  (75) 

If the result for a=O in equation (17) is compared with 
equation (75). the second-order and higher terms are 
identical if the real energies E,, in equation (17) are replaced 
by complex energies F,,. These results, taken with the 
similar results of references 9 and 10, demonstrate that it 
is permissible to replace real energies with complex 
energies, of the form given by equation (60). when study- 
ing resonances. 

Evaluation of Abrasion-Ablation T-Matrix 
The basic Feynman diagram for projectile fragn 3- 

tion, with fireball formation, is shown in figure 5 .  i he 
diagram is similar to those presented elsewhere (refs. 16 
through 18). Since our major interest is in the area uf 
projectile fragmentation, target fragmentation and the 
formation and de-excitation of the fireball are no1 
discussed in this paper. 

hcently, there has been considerable interest in 
rel3tivistic coulomb dissociation and the excitation of 
nuclear giant resonances (refs. 19 through 25).  The 
typical method for describing these excitations is through 
the interaction of the projectile with an equivalent target 
phonon. The excitation process is then described in a 
manner analogous to a photonuclear reaction. The basic 
Feynman diagram for coulomb dissociation is given in 
reference 20. The excitation of a giant resonance may be 
important in determining projectile prefragment charge 
dispersions (ref. 12) and requires further study. Since our 
primary interest is in projectile fragmentation, this pro- 
cess, rather than fireball formation, is emphasized in the 
Feynman diagram. If the fragmentation process is 
thought of as a collection of A projectile nucleons sud- 
denly being excited into a prefragment, then by analogy 
with coulomb dissociation, the excitation process can be 
treated as the interaction between a phonon field and the 
initial A nucleons in the projectile. The Feynman 
diagram for this phonon excitation process is shown in 
figure 3. Since the fireball is difficult to depict, it is sim- 
ply represented as two separate projectile and target 
pieces. Figure 3 is only an alternd‘ive, and more conve- 
nient, way of depicting the interaction shown in f iyre  2, 
and the diagrams yield identical results. In the actual 
fragmentation process shown in igure 2, there is no 
direct interaction between the target and excited 
prefragment. 

To simplify the phase space, the separate phase spaces 
of the individual particles can be replaced by a single 
phase-space factor describing the center of mass of those 
particles. Therefore, the fireball and target fragment are 
replaced here by target recoil T’ and projectile recoil R 
pieces, since we are not interested in the details of the 
phase spaces of these pieces. This Feynman diagram, 
which is used in this analysis, is shown in figure 4. The 
projectile recoil piece R is not the projectile prefragment 
P’. Figure 4 is exactly analogous to a 4-body final-state 
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Feynman diagram (fig. 5) used to describe pion produc- 
tion via isobar formation and decay (refs. 9, 16, and 26 
through 30). This Feynman diagram has recently been 
replaced (refs. 16 and 31) by the 3-body diagram (fig. 6), 
in which the pion escapes but the nucleon is recaptured 
by the projectile nuclw. 

When developing expressions for the T-matrices, at- 
tention is focused on the interactions occurring in the 
projectile prefragment. (See fig. 7.) As noted in the 
following section, the prefragment interactions in fig- 
ures 4 and 7 represent only the lowest-order interaction. 
Higher-order terms are subsequently discussed in detail. 

The Two-Potential Problem 
In the basic fragmentation process it is assumed that 

the projectile nucleus experiences an interaction VI and 
undergoes abrasion. (!ke fig. 7.) The projectile prefrag- 
ment then experiences a different potential V2 and 
ablates to yield the final fragment. This type of "two- 
potential" problem is considered in references 32 through 
34, and the simplest solution is stated in the pion- 
production work of Townsend et al. (ref. 30). 

The T-matrix expansion for abrasion-ablation (AA) is 

+ VknGnjVnmGmjVInj + . . . (76) 

where an Einstein summation convention on triply 
repeated indices is implied. The full interaction potential 
is separated into abrasion VI and abIation VZ pieces as 

v =  v +  vz (77) 

Inserting equation (77) into equation (76) and expanding 
yields 

+ $ G . $ . + v ' G . $  kn ni nr kn ni ni + v " ! G . $  kn ni ni 

+ $ G $ G , g , + f l G ? G  $ kn ni nm mi mi kn ni nm mi ml 

+ . . .  (78) 

Each of these terms represents the higher-order 
generalizations of the Feynman diagram in figure 7. The 
Feynman diagrams, for the terms up to third order in 
equation (78), are shown in figures 8 through 11. where 
the abrasion VI is represented by a wavy line (phonon) 
and the ablation P is represented by a heavy solid line. 
As discussed subsequently, the Feynman diagrams permit 
the abrasion-ablation process to ;roceed in a time- 
reversed fashion with the ablation occurring prior to the 
abrasion. Also, these diagrams do not include exchange 
terms (ref. 3 9 ,  because such exchange diagrams yield 
negligible contributions. 

Although equation (78) and its accompanying Feyn- 
man diagrams are quite complicated, they are shown only 
to third order and thus are not yet accurate enough for 
the present application. Ideally, interactions to infinite 
order should be included. This was effectively done for 
the abrasion step through the use of an eikonal scattering 
amplitude derived from an equivalent 1-body 
Schriidinger equation (refs. 2 and 4). This scatter',lg 
amplitude is simply and directly related to the abrasion 
T-matrix which, by definition, includes abrasion interac- 
tions to infinite order. Since the T-matrix in equation (78) 
includes both abrasion and ablation, the full abrasion 
T-matrix must be extracted to incorporate the previously 
developed abrasion formalism (ref. 4). In other words, 
the abrasion potentials, to infinite order, must be fac- 
tored out in equation (78). 

The technique for factoring out the full abrasion 
T-matrix is most clearly seen by again considering the 
Feynman diagrams. In figure 11. the abrasion process to 
all orders is depicted along with their correspon+v 
mathematical expressions. The simplest approact 
abrasion-ablation inodel would be to incorporal , 
first-order ablation into the infinite-order abraJIoli fv- 
malism. (See fig. 12.) This is done by simply adding abla- 
tion bubbles to the abrasion diagrams in figure 11. 
Mathematically, this is 5quivalent to simply multiplying 
the abrasion series by VknGni to yield 

G . v ' . +  r/z G v' G .VI. 
kn nr nr kn ni nn, mi mi 

= P G .Pb' 
kn nr or (79) 

so that the factorization of the abrasion T-matrix is ap- 
parent. In figure 13, second-order ablation coupled with 
infinite-order abrasion is presented. The corresponding 
series is then of the form 
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G,i qn + ea) G nr .7“! nr 

+ (timereversal terms) (80) 

where the time-reversal terms correspond to ablation oc- 
curring prior to abrasion. If thcse and any subsequent 
time-reversal terms from higher-order diagrams are ig- 
nored, the generalization to infinite-order abrasion- 
ablation clearly yields 

This remarkable and extremely useful result arises entirely 
from equation (77) and the neglect of time-reversal 
Feynman diagrams. The neglect of these diagrams is 
henceforth dubbed as the “time-ordering approxima- 
tion.” Pilklhn (eq. (3.15) of ref. 34) obtains a similar 
result when considering the time ordering of the time 
evolution operators (eq. (3.7) of ref. 34). For the purpose 
of this paper, equation (81) makes possible the incor- 
poration of the infinite-order ablation processes into the 
previously developed infinite-orde- abrasion formalism 
(refs. 2 and 4). 

Phase Space 
In this section the definitions and recurrence relations 

for the Lorentz-invariant, noninvariant, and “normal” 
density-of-states factors cre developed. 

Lorentz-invariant phasc space is given by the 
restricted phase-space element (refs. 34 and 36) 

where the 4-body recurrence relation, in terms of 2-body 
phase spaces, is 

where dec and de, represent integrations over the “non- 
observed’’ particles. 

The noninvariant phase space, which differ; slightly 
from that given on page 388 of reference 33, is defined as 

where Y is the normalization volume. For example, the 
corresponding recurrence relation for a 3-body phase 
space is given as 

Performing the momentum integrals over d Nips 
yields the usual density-of-states definiticn (ref. 37) 

= [ & j ] ” - ’ I I . .  .I N- I 

x d3p ,  d3p2 . . . 

where t k  is :he sun1 of the final energies of the N par- 
ticles. The recurrence relation for thn N-body density of 
states is (ref. 16) 

where, for example, 

t ] 2 , . , N E f ]  t €2 + + (88) 

Abrasion-Ablation Model Derivation 
In previous work (re&. 6 and 38), abrasion-ablation 

cross sections have been determined by calculating abra- 
sion cross section: (refs. 3 and 4) which are then 
multiplied by an ablation probability obtained fro .I com- 
pound nucleus decay probabilities (refs. 6 and 38). It is 
demonstrated in this section that this method of deter- 
mining abrasion-ablation cross sections arises solely froiil 
particular approximations to the general formalism 
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developed herein, and is therefore only a special case of 
this more general formalism. 

In terms of the transition rate, the total cross section 
is written as 

V 

Y 
0 = - w  (89) 

where v is the incident velocity of the projectile. Inserting 
equations (30) and (86) into equation (89). the total 
abrasion-ablation cross seaion for the phase spacr 
associated with figure 4 is 

Using a recurrence relation (ref. 16) derived from equa- 
tion (86) 

demonstrates that d p x  can be replaced by d p p .  in equa- 
tion (W) where 

4 P p .  = d3Pz.y (92) 

This, together with equation (81). allows the cross section 
in equation (90) to be written as 

x d3Pp d3PT’ d3PZ 

A major approximation is now introduced as 

which will hcnceforth be referred to as the “classical 
probability approximation,” since it involves the classical 
addition of probabilities (right-hand side) rather than the 
quantum mechanical addition of amplitudes (left-hand 
side). In essence, it  involves ignoring the in:erference 
terms on the left-hand side of equation (94). It is our 
belief that the famous Bohr assumption for Coinpound 
nucleus deca (ref. 14). which justifies the separation of a 
two-step cross section (such as compound nucleus forma- 
tion and decay, or abrasion-ablation) into a product of 
formation and decay (partial width) cross sections, is 
based upon this classical probability approximation. The 
Bohr assumption is so widely used because of the 

reasonableness of the classical argument. Equation (W) is 
sometimes justified quantum mechanically, especially 
when dealing with angular-momentum matrix dements 
(refs. 32 and 39) where theorems on Clebsch-Gordan 
coefficients are available (ref. 16, chapter 4). This is 
especially true, for example, for a single (one-level) reso- 
nant state involving several different angular-momentum 
projections M (ref. 39). where the summation over n 
simply becomes a summation over M for the single 
resonance state of a particular energy. This was also the 
case for the pion production work of references 26 
through 31, where there was only the single intermediate 
isobar A resonance at a fixed energy but with various spin 
and isotopic spin projections. Norbury (ref. 16) has 
shown that equation ,M) results from the spin-isospin 
Clebsch-Gordan algebra. Another example is the 
photonuclear excitation of a compound nucleus where 
the formation of a resonant state of a single energy, but 
with different spin projections ’’ef. 40). justifies the use 
of the Bohr assumption when calculating (7.4 cross sec- 
tions via compound nucleus formation and decay. In 
general, however, the preceding simplifications which 
justify the classical probability assumption do not hold 
for the abrasion-ablation process. For example, a par- 
ticular final projectile fragment could result from the 
ablation of numerous different prefragments, each with a 
quite different excitation energy. 

The partial width, which is simply a transition rate 
multiplied by Planck’s constant, is 

Substituting equations (94) and (95) into equation (93) 
yields 

which can be rewritten as 

The abrasion cross section is 

12 



which yields 

40 = & c J ~, ,p"i[2un(A)dc, .  (99) 

Inserting the Green's fwction, the abrasion-ablation 
cross section is 

n 

If the branching ratio is defined as 

where thc total rand partial widths are related by 

r=Cr,, 
n 

To evaluate the integral in equatior, (100). the zero- 
width approximation (ref. 34) 

is introduced. Writing the energies explicitly as 

f n  = ep' + CR 

with an initial-state energy given by 

e ,  = t f  -+ ' 7  

and the final-state energy as 

yields 

Inserting equation (107) into equation (100) indicates a 
variable, intermediate, virtual resonance energy tpl 

centered about tx  t ez, which is integrated over. The 
nature of the delta function in equation (102), however, 
destroys this quantum mechanical feature of virtual 
energy in the integral. The zero-width approximation, 
then, can be considered as another classical approxirna- 
tion. Inserting equations (102) and (107) in equation (100) 
yields 

and is recognized as the usual ablation probability factor 
(refs. 6 and 38). then 

which is the standard abrasion-ablation cross-section 
result (refs. 6, 7, 38.41, and 42). 

This result (eq. (! IO)) can also be obtained from equa- 
tion (100) by an alternative method. Since a,,(A) is ob- 
tained by integrating over all impact parameters, it is in- 
dependent of c f I .  Taking it outside the integral enables 
equation (100) to be written as 

Inserting 

inside the integral in equation (111) and substituting 
equation (109) yields 

If g,, is indepenticnt of t,,,(which merely requires r,, and r 
to possess the same energy dependence), then it  can be 
taken outside the integral to yield 

In principle, if the dependence of ron E,,' is known, then 
the integral can be calculated numerically if not 
analytically. If the zero-widt h apprJximation is inserted 
from equation (102), equation (1 10) is again obtained. 

Equation (1 10) is one of the central results of the pres- 
ent work. It represents a first-principles derivation of the 
usual abrasion-ablation cross section and results directly 
from: (1) the time-ordering approximation, (2) the 
classical probability approximation, and (3) the zero- 
width approximation. Clearly then, the most obvious im- 
provements to the abrasion-ablation theory would be to 
remove these assumptions (the time-ordering approxima- 
tion is the least important). The zero-width approxima- 
tion is removed in the next section. 
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~tz - In~tDi f f eN!nt idcr0ss sae t ioa  
For an arbitrary number N of particles in the final 

state, the total cross section is 

For a specific final particle or fragment 2 the differential 
cross smion is 

This is formally cast into Lorentz-invariant form as 

The c2  which appears in equation ( I  17) is cancelled by an 
c z  which appears when the interaction matrix elements 
are explicitly evaluated. 

Using 

d3p = p 2  dpdn (118) 

it follows that 

and 

( ! 20) 

where (d3u/@/t) is the Lorcntz-invariant differential 
cross section obtained from equation (1 17). The notation 
"frame" in equations (119) and (120) denotes that the 
specified quantity is evaluated in the desired reference 
frame, which is completely arbitrary. The angular 
(&/tin) and spectral (do/&) distributions are then ob- 
tained from equation (120) by performing the a p  
propriae energy or angle integrations in that particular 
specified frame. 

For the abrasion-ablation Feynman diagram of fig- 
ure 4. the Lorentz-invariant differential cross section is 

Employing the classical probability approximation and 
introducing d Nips, equation (121) becomes 

which, upon inserting equation (98). becomes 

Inserting the Green's function yields 
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which demonstrates the need to evaluate the ablation 
(decay) matrix ckmenu directly (when dca%g with dif- 
ferential cross sections) rather than using partial widths 
(sce eq. (1 IO)), as was done with total cross sections. 

Equation (124) is a major result of the present work, 
since it provides the framework for calculating angular, 
spectral, and Lorenu-invariant distributions for the 
abrasion-ablation process in terms of the previousiy 
devdopcd abrasion cross-section formalism (ref. 4). 
Fragment angular and spectral distributions can be ob- 
tained from quations (124) and (120) by performing the 
appropriate integrals. Clearly. the comparison of these 

distributions with experiment is of major importance in 
determining the accuracy of the pnsmt abmsion- 
ablation theory. Although these comparisons have not 
yet been done, equation (124) provides the framework 
nmssary to do them. The remaining tnajor task is to 
evaluate the ablation matrix element cy- 
1,anglcy Research Center 
National Aeronautics and Space Administration 
Hampton. VA 23665 
September 7,1984 
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A 

AA abrasion-ablation process 

C 

cbt) initial-state probability amplitude 

e&) final-state probability amplitude 

CAI) arbitrary-state probability amplitude 

cn( f )  intermediate-state probability amplitude 

d Lips Lorenu-invariant phasespace element 

d Nips Noninvariant phasespace eicmcnt. MeV - 

mass number of final projectile prcfrasment 

spced of light. 3 x IOe m/sec 

differential cross-section element, mb 

energy element. MeV 

momentum phase-space element, (MeV/c)3 

element of solid angle, sr 

highly excited fireball 

Fourier transform of probability amplitude 

Green's operator, MeV- I 

Green's function, MeV- I 

branching ratio 

full Hamiltonian, MeV 

unperturbed Hamiltonian, MeV 

Planck's constant (6.58 x 10- 2 MeV-=) 

time-dependent integral 

initial-state vector 

final-state vector 

angular momentum projection, MeV-fm-c- I 

number of bodies in final state 

In> 

P 

44 

Pl(0 

P 

P 

R 

T 

? 

Tkn 

T' 

I 

IO 

V 

' k n  

V' 

V2 

V 

W 

X 

Z 

z 

a 

r 

rn 

Y 

A 

intermediatestate vector 

projectile 

total transition probability 

singlestate transition probability 

excited prefragmmt 

momentum. MeVc- I 

recoil projectile 

tar@ 

transition operator, MeV 

transition matrix element. MeV 

recoil target 

time, xc 

initial time, sec 

interaction potential, MeV 

matrix element of interaction potential, MeV 

abrasion potential, MeV 

ablation potential, MeV 

incident projectile velocity, m/xc  

transition rate, sec- 1 

ablated projectile particle3 

final projectile fragment 

number of abraded protons 

convergence factor 

total decay width, MeV 

partial decay width, MeV 

photon 

intermediate isobar resonance 



At,, energy shift, MeV 

bki Kroneckerdclta 

Nod D i m  ddta function on frequency, sec 

c energy. MeV 

ci initial-state energy, MeV 

f k  final-State Cnetgy, MeV 

e,, intmnediatcstate energy. MeV 

cz 

e,, intermediate complex energy, MeV 

final energy of ablated particles, MeV 
5 

V volume normalition element, fm3 

%k)  

a cross section, mb 

* full wave function 

S2 solid angle, sr 

W angular frequency, sec- 1 

density of find states, MeV- I 

Subscripts: 
i initial state 

k final state 

I arbitrary state 

m arbitmystate 

n intermediate state 

P projectik 

7 target 

Superscripts: 
AA abrasion-ablation 

ab1 ablation 

abr abrasion 

Okn frequency difference between states jk> and 
In> ,  xc-I 
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Figure 1. Contour for I&). 

T' 

F' 

X (y, N, IT, etc. 
ablated particles) 

Figure 2. Feynman diagram of projectile fragmentation and fireball formation. 
(Final-state interactions are iknored.) 
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(Target piece of fireball) 

2 

(Projectile piece of fireball) 

Figure 3. Feynman diagram of equivalent target phonon excitation of projectile 
prefragmmt . 

Figure 4. Equivalent Feynman diagram (lowest order; no time 
reversal) of projectile prefragmentation used in this work. 
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Figure 5.  Feynman diagram of pion production with 
4-body final phase space. 

/ 

R 

Figure 6. Feynman diagram of pion production with 3-body final 
phase space. 
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Figure 7. Lowest-order projectile prefrag- 
ment interactions. Wavy line represents 
abrasion VI, and heavy solid line 
represents ablation V2. 

Figure 8. First-order matrix elements of abrasion-ablatior! T-matrix 
in equation (78). 
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kn ni ni 

Figure 9. Second-order matrix elements of abrasion-ablation T-matrix in equation (78). 
(The first abrasion process on left-hand bubbles is that of figure 4. All other abrasion 
processes are only indicated schematically. Particle number conservation is not shown 
explicitly as it is for ablation.) 
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V1 G G .V1 kn n I mi mi 
v1 G V1 G .V2 kn ni nm mi mi V' G .V' G .V1 kn ni nm mi mi 

V1 G V2 G ,V2 kn ni nm mi mi 
v2 G v1 G V2 
kn ni nm mi mi V2 G .V1 G V1 

kn ni nm mi mi 

V2 G V2 G V1 
kn ni nm mi mi 

V2 G V2 G V2 
kn ni nm mi mi 

Figure 10. Third-order matrix dements of abrasion-ablation T-matrix in equation (78). (Abrasions 
are indicated schematically as in fig. 9.) 

24 



b 
V1 ni 
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V1 G V1 
nm mi nri 

+ . . $ .  

V I G  V1 (3. V1 
nl li lm mi mi 

Figure 1 1 .  Abrasion to all orders. 

V2 G V' 
kn ni ni 

+ 

tr2 G V1 G V1 
kn ni nm mi mi 

V2 G V I G  V1 G V1 kn ni nl li lm mi mi 

+ . . . .  

Figure 12. Abrasion to all orders with ablation to first order. 
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Figure 13. Abrasion to all orders with Ablation lo second order. 
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